OVERVIEW OF BEAM INSTABILITIES
A. Hofmann
CONTENT

1) Introduction

)
2) Longitudinal coupled bunch instabilities
3) Transverse coupled bunch instabilities

4) Single traversal head-tail instability
5) Coasting beam instabilities
6) Bunch lengthening

1) Introduction:

The motion of a single particle in a ring is determined by external
guide fields (dipole and quadrupole magnets, RF-system) and initial
conditions. The many particles in a high intensity beam represent
them self charges and currents which are sources of electromagnetic
fields (self fields). They are modified by the boundary conditions
(impedance) of the beam surroundings (vacuum chambers, cavi-
ties, etc.) and act back on the beam. This can lead to a frequency
shift (change of the betatron or synchrotron frequency), to an in-
crease of a small perturbation of the beam, i.e. an instability or
to a change of the particle distribution, e.g. bunch length-
ening.

If the self-fields are small compared to the guide field and their
effect is treated as a perturbation. In some cases, like bunch length-
ening, a self-consistent distribution has to be found.

Multi-traversal effects require an impedance with memory,
usually a narrow band cavity. Single traversal effects can be
driven by a broad-band impedance. The two effects are usually
treated separately, except for continuous (unbunched, coast-
ing) beams. These instabilities can be longitudinal or trans-
verse, involving synchrotron or betatron oscillations.
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2) Longitudinal coupled bunch instabilities
Robinson instability
The longitudinal dynamics is based on the relation between the devi-
ations from nominal energy E and revolution frequency wy expressed
by the momentum compaction «...

Ab = [32% = —ﬁ—z——A—u—)Q ,with 1, = a, — i

E D Tle Wo v?

The RF-cavity oscillates with harmonic frequency wrp = hwy giving
a particle arriving at the synchronous time £, or phase ¢, = wppt;
an energy U; = eV sin ¢, per turn to compensate losses. Particles
arriving before or after £, receive a different energy. This, together
with the energy dependence of wy, leads to longitudinal focusing.
Particles execute synchrotron or energy oscillations with frequency

Ws
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Vre(t) = Vsin(hwot) , wi = —wj o BE Qws.
Above transition energy 7. > 0 and cos ¢, < 0,
below transition energy 1. < 0 and cos ¢, > 0.
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" /;‘avity (t)

A bunch circulating in a storage ring induces a voltage in a cavity
which can change its energy on the next turn. This can increase
a synchrotron oscillation and lead to an instability. We consider
a single, narrow cavity resonance with shunt impedance R, and
frequency w, ~ pwg. The current component I, of the bunch at
the frequency w, = pwy induces a voltage

wf—wz) . 7
cos(wpt) — Q=== sin(w,t)
rp

V(t) = LV (Z, cos(pwit) — Z; sin(pwot)) = IR,
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Qualitative treatment:
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Oscillating bunch AE = AFE cos(wst), above transition, 7. > 0

A) Cavity tuned to w, < pwy.

If AE > 0, Awy < 0, impedance large, energy loss in cavity large.
if AE <0, Awy > 0, impedance small, energy loss in cavity small.
This condition is stable.

B) Cavity tuned to w, > pwy.

If AE > 0, Awy < 0, impedance small, energy loss in cavity small.
if AE <0, Awg > 0, impedance large, energy loss in cavity large.
This condition is instable.

Below transition energy the situation is reversed.
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Quantitative treatment:

time domain
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The oscillating bunch creates side-bands to the revolution har-
monics at the frequencies and with current components
Wpt = w()(p:l:Q3>7 ]pﬂ: = %I(wpi>a [<°‘)) - \/—12—;/_020 [(t>e—u}tdt'
Including the voltage induced at w,; in Z the longitudinal dynam-
ics gives a synchrotron oscillation with an exponential growth (or
damping) rate and frequency shift

AE = AEe 2% o5 ((wy + Awg )t)
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The growth (or damping) rate depends on the difference in impedance
between the upper and lower sideband.
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Cavity field induced by the two sidebands
E. Wy = (2 + QS)WO
N /‘t\t -
E; . Wy = (2 - Qs)w() .
P |
|

¢ Phase motion of the bunch center 4

€ €
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This can be understood qualitatively from the above figure having
p=2and Q, = w,/wy = 0.25. At v > v, the voltage induced by
the upper sideband enhances the oscillation, the one from the lower
sideband reduces it. Below transition the situation is reversed.
General impedance: We have to take the impedance at the
sidebands of all revolution harmonics pwy

1 Wy
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Complex impedance: The expressions become more compact
using Z(w) = Z,(w) + jZ;(w) and Aw = Awg, + jAws; with
exp(jwt) using positive and negative frequencies.
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Global view of frozen motion

bunch:l 2 3 4 1
AE T ¢
) .-

VS

Motion obhserved at a fixed location vs. time

bunchl 2 3 4 1 2 3 2 3
AFE TN //\\ n m /

: TR L 4

/ \\ / \\ / \\ // \ /

4 1
\ 2 O
- \ I )
; Y
\ \ / t
! N
o . \/ W A/ \ w

I I

0 1 é turn k
Spectrum
IQS
| | | L5 |
0 1 2 3 4 w/wp

Many bunches: With M equidistant bunches in the ring there
are M independent modes of coupled bunch oscillations labeled by
the coupled mode number 0 < n < M — 1 which is related to
the difference A¢ of oscillation phase between adjacent bunches
n = A¢/(2rM). Each mode n has one pair of sidebands in each
frequency range of Mwy at
Wyt = wo(pM £ (n + Q)

The above figure shows an example for M =4, n =1 and Q, =
ws/wg = 0.25 The growth rate of each mode n is given by a sum
over the impedance differences of each sideband pair.

W { \ :
= i e 3 (0 QI A )~ (0= Qe )
Bunch shape oscillations: In addition to the rigid dipole
modes (m = 1) there are bunch shape oscillations, quadrupole
mode (m = 2), sextupole mode (m = 3), ... with the frequencies

wpt = wo(pM £ (n 4+ mQy).
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3) Transverse coupled bunch instabilities
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Transverse impedance: Cavities can have transversely deflect-
ing modes. They are excited by the beam through the longitudinal
electric field which is converted into a deflecting magnetic field a
quarter of an oscillation period 7, /4 later. The impedance is given
by an integral around the ring over the Fourier component of the
deflecting fields divided by the Fourier component of the dipole mo-
ment. The 'j’ indicates that deflection and dipole moment are out
of phase which is avoided if we take the time derivative of the latter

§ (Ew) + [Bc x Bw)]), W $(E(w) +[8 x B(w)])_ds
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A single bunch executing a betatron oscillation with tune @) =
integer + q excites a cavity with a frequencies wy(p + q). For M
equidistant bunches there are M coupled modes possible labeled
with 0 < n < M — 1 with frequencies

wpr = wo (pPM £ (n +q))
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A bunch passes with a displacement 2 through the cavity and
excites a fields £ which converts after T, /4 into a field —B, then
into —F and after into B. The oscillating bunch has sidebands
at wo(integer £ q) (we take ¢ = 1/4). With the cavity tuned to
the upper sideband the bunch will traverse it in the next turn at
t =T,(k+ 1/4) with a transverse velocity in the —z direction and
receive by the magnetic field a force in the opposite direction which
damps the oscillation. With the cavity tuned to the lower sideband
the bunch traverses at t = 7, (k' 4+ 3/4) with a negative velocity and
receive a force in the same direction. Like in the longitudinal case
the resistive impedances at the two sidebands have opposite effects
leading to a similar expression for the growth or damping rate.

— 5 (12 Zrlans) — 2_Zr(ey-)
with
wpr =wp (pM £ (n+4q)).
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4) Single traversal head-tail instability

4 periods
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The transverse head-tail instability involves coherent transverse bunch
motion and incoherent longitudinal motion. The synchrotron oscil-

lations of a particle represents an ellipse in the phase space of energy

AL and time 7 deviation. A simultaneous transverse oscillation can
be influence by this through the chromaticity Q' = dQ/(d@JR). A

particle going from head to tail of the bunch due to a synchrotron
oscillation has for (yy > 0) an excess energy and, for Q' > 0,
a higher betatron frequency. This is reversed in the second half
of the oscillation, going from tail to head. Consequently there is
a betatron phase advance between head and tail for the coherent
transverse oscillations. ‘

Q =0 Q /0
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Instability: A broad band impedance, with a memory as short
as the bunch length, can be exited by an oscillation of the particles
A at the bunch head. This can in turn excite an oscillation of the
particles B at the tail with a certain phase A¢ compared to the
head. After half a synchrotron oscillation period the particles B are
at the head and the particles A at the tail oscillating with a phase
—/A¢ compared to B assuming ' = 0. The excitation by the head
has now the wrong phase to keep the oscillation growing unless the
chromaticity is finite and has the correct sign. In this case a head-
tail instability can occur.

The 'wiggle’ of the head-tail motion shifts the envelope of the side-
bands by w; = Q'wy /1. and we have current components

w ~
Les = ﬁ[(wpi + we), wyr = wo (pM £ (n+ q))

which can be very different for the two adjacent sidebands. Even a
very broad band impedance can lead to an instability.

ylpw) Q’ =0




5) Coasting beam instabilities
Transverse: The transverse betatron frequencies of a beam with
nominal momentum are

war = (ny+Qlwo , wgs = (ns — Q)wo.
Through

AE A 2A A
= [)’2 b_ —ﬁ—ﬂ ;and AQ = Q’—p
Ne Wo p
they are affected by a momentum deviation

A A
Mgy = (@ =nlng+ @) Awgs = (@ —lne— Qoo ”

resulting in two frequency distributions f(wgs), flwss). We excite

the beam by an acceleration Gexp (jwt) with frequency w being
close to wg,s or wgs and get a velocity response of the center of
mass of the distribution

f(wsy Gw
d / _
2Qwo / wap — w i 2Quwo

N f(w/fs . Gw )
S QQWO / W3s — deﬂS - QQWO ﬂ-f( A PV/ Was — W dwﬁs'

The term 7 f(w) is real, excitation and response are in phase

— W

(Wf(u)+]PV/ wy) >dw/3f

resulting in an absorbtions of energy and damping, called Landau
damping. It is only present if the excitation frequency w is within
the frequency distribution of the individual particles. The second
term is imaginary and gives the out-of-phase response being of less
interest.
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The oscillating beam can induce a voltage in a transverse impedance
which in turn applies a self acceleration G to the beam

[(Blw) + 7 x Bw)), ds , G, = —2010

w
Iy(w)
If G, = G we can have a steady self sustained oscillation without

external excitation, i.e. a threshold of an instability. Introducing
this into the response we get for this threshold

7 _
rw) ~yrno2m Rw

. JeclZp(w) ¢ flwss _ eclZp(w) flwsy)
L= ATQE ~/ww—wu - 4rQE mfw +]PV/?M m%
_ —jecl Zp(w fwss " eclZr(w) f W3s)
- A4TQFE /w/gs —u) Wps = 4mQE \ mfw) ]PV/ wﬁs '

These equations represent relations between the complex |mpedance
and the complex beam response to an excitation. It is represented
by the so-called stability diagram shown in the figure for a Gaus-
sian distribution. If the impedances lies inside the central curve we
have stability, outside an instability. The curve itself represents the
threshold. lIts shape is determined by the frequency distribution of
the particles.
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Longitudinal: The longitudinal dynamics of a coasting or un-
bunched beam is governed by the relation between the deviations in
momentum and revolution frequency

A A 2ZA 1
= [)’2 P_ _ P A ,with 7. = a, — —;.
e Wo y

The beam has an eqmllbrium energy distribution which translates
into a distribution in revolution frequency

| 1 d?N 1 d?N
E) = — Fo(Awg) = —
JWAE) = apap — FolBwo) N dfdewy
EonﬁLAE

_I—d:@ Uy exp(iwl)

A stable beam has a continuous current I, however, exciting it with
Up exp(jwt) close to nwy give a current perturbation

—JNe iUy 1 dFy(wo)/dt Ne2uwdU ( dF, _ >
dwp = _iPV .
21 3°E) / W — nwo ° 21 3°F) deo (@)= /

This current I; can induce a voltage in an impedance Z. If it is

I(t) =

as large or larger than Uj it can replace the external excitation and
keep the current modulation going or increase it. We get for this

stability limit
~ Ne*winZz(w) 7rdF0 PV /dFo wo /dt
- 27BFE dwo W — Nwy )

This equation is a complex mapping which can be represented in
form of a stability diagram which depends on the energy or revolution
frequency distribution of the particles
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1 — NezwgnZ(w) ﬂ'dF() dFO(wO)/dtdwo) .

—jPV |
2w 32E dwy (W)= / W — nwy
To separate the dependence on the form of the distribution from

the one on physical parameters like F, Iy, Ap/p and 7. the stability
diagram is normalized with the width the momentum spread. Taking

many such diagrams and approximating them with a circle gives the
(Keil-Schnell) stability criterion

Z < 21 (32 En( Ap/p)2
- 6]0 .

n
Important is the strong dependence on the momentum spread, or the
connected frequency spread, which gives rise to Landau damping.
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6) Bunch lengthening
The impedance of a ring consists often to a large part of many
resonances with different frequencies w,., shunt impedance R, and
quality factors Q). At w < w, low frequencies their impedances are
mainly inductive

2_ 2

1 — 7QQ“=%r
Z(w) = Ry jQQW; 5 & ijw .....

The sum impedance at low frequencies all these resonances divided
by the mode number n = w/wy is called

A

n

Rskw() I
- - JC()O.
0 k kark
with L being the inductance. A bunch with current [(#) induces
a voltage V; = —LdI,/dt which is added to the RF-voltage
dly

V(t) = Vsin(hwot) — L—.
(1) = Vsin(hwot) o

Developing around g, using 7 = t — t,, ¢, = hwyt, and using a

parabolic bunch
(")

Average current I
() = 11— 72/7)
dly/dT = 3rlyT /7]

O T
gives the voltage |

. . 3l Z/n|ol
V=Vsing, +V cosphwyr | 1 + — mlZ/nloko ) .
hV cos pg(womp)?

and synchrotron frequency shift for the particles in the bunch
Aws, 3| Z/nfoly
ws 2RV cos bs(woT)3
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Only the incoherent frequency of the individual particles in the bunch
is changed (reduced for v > ~, increased for 4 < 7). The coher-
ent dipole (rigid bunch) is not affected by the inductive impedance.
This can separate the coherent synchrotron frequency from the in-
coherent distribution and lead to a loss of Landau damping.

The reduction of the longitudinal focusing increase of the bunch
length given by a 4th order equation for protons with constant phase
space area

4 3| Z/n|ol ,
(@_) N 7| Z/nlolo (ﬂ))_lzo

700 RV cos ds(woTno)? \To0

The assumed parabolic bunch current is the projection of an elliptic
phase space distribution. In this case the bunch form is not changed
just its length increased. This is more complicated for other distri-
bution like for the Gaussian shown in the figure.
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